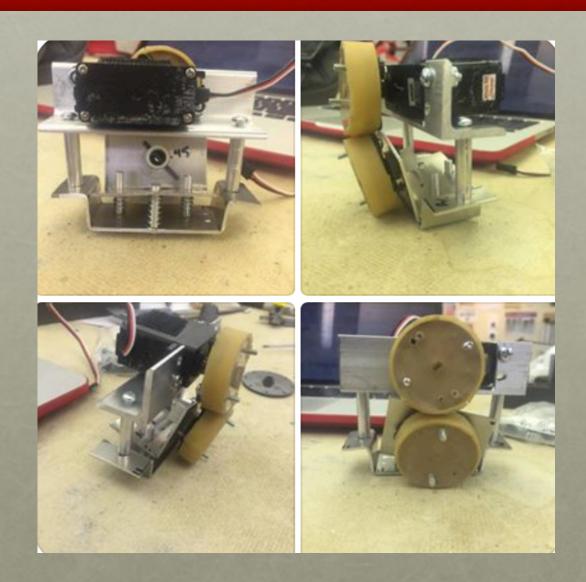
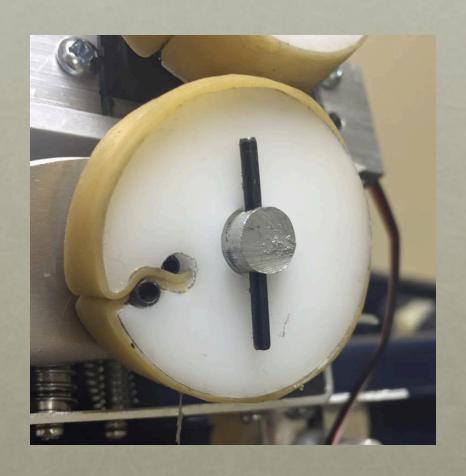

MILESTONE #9-ORAL DESIGN REVIEW


Yasmin Chavez

STRATEGY

- Start during autonomous period
- Midnight Ride[38 Points]
- Pick up balls [at least 6]
- Munitions Hiding in 1st Chute [126 Points]
- Total: 164 Points

CURRENT PROGRESS



Materials:

- -Delrin
- -Rubber Band
- -Epoxy
- -1/8 Roll Pin

Advantages:

- -Rubberband doesn't slip off
- -Custom Wheel Size
- -Clean

WHEEL RADIUS CALCULATIONS

- To be adjusted after robot is completed*
- From homework:

$$r_{\text{wheel}} = V_{\text{in}} K_{\text{t}} / 2 \text{mgR}$$

- $V_{in} = 4.8V$
- $K_t = V_{in}/\Omega_{no load} = (4.8V)/(7.3 \text{ rad/sec}) = .658Nm/A$
- m_{estimated}=1 kg
- $R=V_{in}K_t/T_{stall}=(4.8V)(.658Nm/A)/(.471Nm)=6.71\Omega$

$$r_{\text{wheel}} = (4.8 \text{V}) * (.658) / (2) (1) (9.8) (6.71)$$

= .024m = .98 in

WHEEL RADIUS-WEIGHT RELATIONSHIP

- $r_{\text{wheel}} = V_{\text{in}} K_t / 2 mgR$
- As weight increases...r_{wheel} decreases

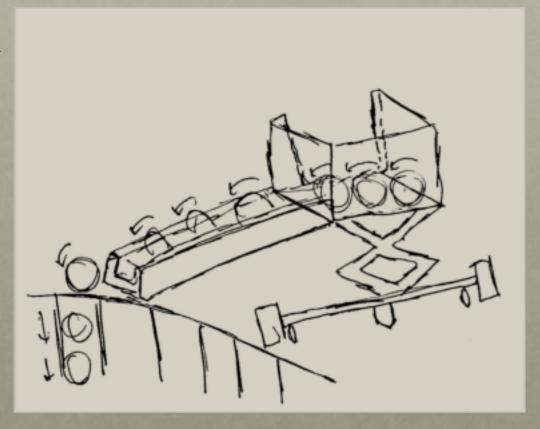
Materials:

- -5/16 Rod
- -Springs
- -#10 Nut
- -#25 Screw
- -Aluminum

Advantages:

- -Adjustable Grip on the Rail
- -Don't have to worry about the changes in height/slope of the rail

GRIP FORCE


- $F_{measured} = \mu N$
- $F_{\text{measured}} = 51bs = 22.24N$
- $\mu_{\text{rubber-stainless steel}} = .64$

$$N_{\text{one module}} = 22.24 \text{N} / .64 = 34.75 \text{N}$$

 $N_{\text{two modules}} = 69.6 \text{N} = 15 \text{lbs}$

MUNITIONS HIDING

- Box-Style
- Lifts up
- Long "arm" angles down to chute

SCHEDULE

Date	Goals	To-Do
4/13	Drivable Robot	-Add Servo to Front Wheels -Attach Caster-replacement
4/14	Ball Box	-Fabricate Box -Design Lifting Mechanism
4/15 [no 2.678 lab]	Ball Manipulator	-Fabricate Lifting Mechanism
4/19 [no class]	Ball Release	-Design & Fabricate Release Mechanism
4/20	Integration	-Put all 3 Together -Re-do Base Plate

SCHEDULE [CONT.]

Date	Goals	To-Do
4/21	Controller Programming	-Switch to PS or Figure out how to use RC one.
4/22	Light Detector	-Figure out how
4/25	Autonomous Climb	-Write Code
4/26	Modify	
4/27	Modify	